Neural Networks with R: Build smart systems by implementing popular deep learning models in R

Build strong foundation for entering the world of Machine Learning and data science with the help of...
Dhs. 351.56 AED
Dhs. 351.56 AED
SKU: 9781788397872
Product Type: Books
Please hurry! Only 606 left in stock
Author: Balaji Venkateswaran
Format: Paperback
Language: English
Subtotal: Dhs. 351.56
10 customers are viewing this product
Neural Networks with R: Build smart systems by implementing popular deep learning models in R by Venkateswaran, Balaji

Neural Networks with R: Build smart systems by implementing popular deep learning models in R

Dhs. 351.56

Neural Networks with R: Build smart systems by implementing popular deep learning models in R

Dhs. 351.56
Author: Balaji Venkateswaran
Format: Paperback
Language: English

Build strong foundation for entering the world of Machine Learning and data science with the help of this comprehensive guide

Key Features

  • Get started in the field of Machine Learning with the help of this solid, concept-rich, yet highly practical guide.
  • Your one-stop solution for everything that matters in mastering the whats and whys of Machine Learning algorithms and their implementation.
  • Get a solid foundation for your entry into Machine Learning by strengthening your roots (algorithms) with this comprehensive guide.

Book Description

As the amount of data continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of Big Data and Data Science. The main challenge is how to transform data into actionable knowledge.

In this book you will learn all the important Machine Learning algorithms that are commonly used in the field of data science. These algorithms can be used for supervised as well as unsupervised learning, reinforcement learning, and semi-supervised learning. A few famous algorithms that are covered in this book are Linear regression, Logistic Regression, SVM, Naive Bayes, K-Means, Random Forest, TensorFlow, and Feature engineering. In this book you will also learn how these algorithms work and their practical implementation to resolve your problems. This book will also introduce you to the Natural Processing Language and Recommendation systems, which help you run multiple algorithms simultaneously.

On completion of the book you will have mastered selecting Machine Learning algorithms for clustering, classification, or regression based on for your problem.

What You Will Learn

  • Acquaint yourself with important elements of Machine Learning
  • Understand the feature selection and feature engineering process
  • Assess performance and error trade-offs for Linear Regression
  • Build a data model and understand how it works by using different types of algorithm
  • Learn to tune the parameters of Support Vector machines
  • Implement clusters to a dataset
  • Explore the concept of Natural Processing Language and Recommendation Systems
  • Create a ML architecture from scratch.

Who This Book Is For

This book is for IT professionals who want to enter the field of data science and are very new to Machine Learning. Familiarity with languages such as R and Python will be invaluable here.



Author: Balaji Venkateswaran, Giuseppe Ciaburro
Publisher: Packt Publishing
Published: 09/27/2017
Pages: 270
Binding Type: Paperback
Weight: 1.03lbs
Size: 9.25h x 7.50w x 0.57d
ISBN: 9781788397872

About the Author
Venkateswaran, Balaji: - Giuseppe Bonaccorso is a machine learning and big data consultant with more than 12 years of experience. He has an M.Eng. in electronics engineering from the University of Catania, Italy, and further postgraduate specialization from the University of Rome, Tor Vergata, Italy, and the University of Essex, UK. During his career, he has covered different IT roles in several business contexts, including public administration, military, utilities, healthcare, diagnostics, and advertising. He has developed and managed projects using many technologies, including Java, Python, Hadoop, Spark, Theano, and TensorFlow. His main interests on artificial intelligence, machine learning, data science, and philosophy of mind.

This title is not returnable

Returns Policy

You may return most new, unopened items within 30 days of delivery for a full refund. We'll also pay the return shipping costs if the return is a result of our error (you received an incorrect or defective item, etc.).

You should expect to receive your refund within four weeks of giving your package to the return shipper, however, in many cases you will receive a refund more quickly. This time period includes the transit time for us to receive your return from the shipper (5 to 10 business days), the time it takes us to process your return once we receive it (3 to 5 business days), and the time it takes your bank to process our refund request (5 to 10 business days).

If you need to return an item, simply login to your account, view the order using the "Complete Orders" link under the My Account menu and click the Return Item(s) button. We'll notify you via e-mail of your refund once we've received and processed the returned item.

Shipping

We can ship to virtually any address in the world. Note that there are restrictions on some products, and some products cannot be shipped to international destinations.

When you place an order, we will estimate shipping and delivery dates for you based on the availability of your items and the shipping options you choose. Depending on the shipping provider you choose, shipping date estimates may appear on the shipping quotes page.

Please also note that the shipping rates for many items we sell are weight-based. The weight of any such item can be found on its detail page. To reflect the policies of the shipping companies we use, all weights will be rounded up to the next full pound.

Related Products

Recently Viewed Products