Deep Learning with Python, Second Edition

Printed in full color! Unlock the groundbreaking advances of deep learning with this extensively revised new edition...
€111,43 EUR
€111,43 EUR
SKU: 9781617296864
Product Type: Books
Please hurry! Only 69 left in stock
Author: Francois Chollet
Format: Paperback
Language: English
Subtotal: €111,43
10 customers are viewing this product
Deep Learning with Python, Second Edition by Chollet, Francois

Deep Learning with Python, Second Edition

€111,43

Deep Learning with Python, Second Edition

€111,43
Author: Francois Chollet
Format: Paperback
Language: English
Printed in full color! Unlock the groundbreaking advances of deep learning with this extensively revised new edition of the bestselling original. Learn directly from the creator of Keras and master practical Python deep learning techniques that are easy to apply in the real world.

In Deep Learning with Python, Second Edition you will learn:

Deep learning from first principles
Image classification and image segmentation
Timeseries forecasting
Text classification and machine translation
Text generation, neural style transfer, and image generation
Full color printing throughout

Deep Learning with Python has taught thousands of readers how to put the full capabilities of deep learning into action. This extensively revised full color second edition introduces deep learning using Python and Keras, and is loaded with insights for both novice and experienced ML practitioners. You'll learn practical techniques that are easy to apply in the real world, and important theory for perfecting neural networks.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Recent innovations in deep learning unlock exciting new software capabilities like automated language translation, image recognition, and more. Deep learning is quickly becoming essential knowledge for every software developer, and modern tools like Keras and TensorFlow put it within your reach--even if you have no background in mathematics or data science. This book shows you how to get started.

About the book
Deep Learning with Python, Second Edition introduces the field of deep learning using Python and the powerful Keras library. In this revised and expanded new edition, Keras creator François Chollet offers insights for both novice and experienced machine learning practitioners. As you move through this book, you'll build your understanding through intuitive explanations, crisp color illustrations, and clear examples. You'll quickly pick up the skills you need to start developing deep-learning applications.

What's inside

Deep learning from first principles
Image classification and image segmentation
Time series forecasting
Text classification and machine translation
Text generation, neural style transfer, and image generation
Full color printing throughout

About the reader
For readers with intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required.

About the author
François Chollet is a software engineer at Google and creator of the Keras deep-learning library.

Table of Contents
1 What is deep learning?
2 The mathematical building blocks of neural networks
3 Introduction to Keras and TensorFlow
4 Getting started with neural networks: Classification and regression
5 Fundamentals of machine learning
6 The universal workflow of machine learning
7 Working with Keras: A deep dive
8 Introduction to deep learning for computer vision
9 Advanced deep learning for computer vision
10 Deep learning for timeseries
11 Deep learning for text
12 Generative deep learning
13 Best practices for the real world
14 Conclusions

Author: Francois Chollet
Publisher: Manning Publications
Published: 12/21/2021
Pages: 504
Binding Type: Paperback
Weight: 2.30lbs
Size: 9.20h x 7.40w x 1.30d
ISBN: 9781617296864

About the Author
François Chollet works on deep learning at Google in Mountain View, CA. He is the creator of the Keras deep-learning library, as well as a contributor to the TensorFlow machine-learning framework. He also does AI research, with a focus on abstraction and reasoning. His papers have been published at major conferences in the field, including the Conference on Computer Vision and Pattern Recognition (CVPR), the Conference and Workshop on Neural Information Processing Systems (NIPS), the International Conference on Learning Representations (ICLR), and others.

Returns Policy

You may return most new, unopened items within 30 days of delivery for a full refund. We'll also pay the return shipping costs if the return is a result of our error (you received an incorrect or defective item, etc.).

You should expect to receive your refund within four weeks of giving your package to the return shipper, however, in many cases you will receive a refund more quickly. This time period includes the transit time for us to receive your return from the shipper (5 to 10 business days), the time it takes us to process your return once we receive it (3 to 5 business days), and the time it takes your bank to process our refund request (5 to 10 business days).

If you need to return an item, simply login to your account, view the order using the "Complete Orders" link under the My Account menu and click the Return Item(s) button. We'll notify you via e-mail of your refund once we've received and processed the returned item.

Shipping

We can ship to virtually any address in the world. Note that there are restrictions on some products, and some products cannot be shipped to international destinations.

When you place an order, we will estimate shipping and delivery dates for you based on the availability of your items and the shipping options you choose. Depending on the shipping provider you choose, shipping date estimates may appear on the shipping quotes page.

Please also note that the shipping rates for many items we sell are weight-based. The weight of any such item can be found on its detail page. To reflect the policies of the shipping companies we use, all weights will be rounded up to the next full pound.

Related Products

Recently Viewed Products