Machine Learning for Time-Series with Python: Forecast, predict, and detect anomalies with state-of-the-art machine learning methods

Become proficient in deriving insights from time-series data and analyzing a model's performanceKey Features: Explore popular and...
€114,22 EUR
€114,22 EUR
SKU: 9781801819626
Product Type: Books
Please hurry! Only 384 left in stock
Author: Ben Auffarth
Format: Paperback
Language: English
Subtotal: €114,22
10 customers are viewing this product
Machine Learning for Time-Series with Python: Forecast, predict, and detect anomalies with state-of-the-art machine learning methods by Auffarth, Ben

Machine Learning for Time-Series with Python: Forecast, predict, and detect anomalies with state-of-the-art machine learning methods

€114,22

Machine Learning for Time-Series with Python: Forecast, predict, and detect anomalies with state-of-the-art machine learning methods

€114,22
Author: Ben Auffarth
Format: Paperback
Language: English

Become proficient in deriving insights from time-series data and analyzing a model's performance


Key Features:

  • Explore popular and modern machine learning methods including the latest online and deep learning algorithms
  • Learn to increase the accuracy of your predictions by matching the right model with the right problem
  • Master time-series via real-world case studies on operations management, digital marketing, finance, and healthcare


Book Description:

Machine learning has emerged as a powerful tool to understand hidden complexities in time-series datasets, which frequently need to be analyzed in areas as diverse as healthcare, economics, digital marketing, and social sciences. These datasets are essential for forecasting and predicting outcomes or for detecting anomalies to support informed decision making.


This book covers Python basics for time-series and builds your understanding of traditional autoregressive models as well as modern non-parametric models. You will become confident with loading time-series datasets from any source, deep learning models like recurrent neural networks and causal convolutional network models, and gradient boosting with feature engineering.


Machine Learning for Time-Series with Python explains the theory behind several useful models and guides you in matching the right model to the right problem. The book also includes real-world case studies covering weather, traffic, biking, and stock market data.


By the end of this book, you will be proficient in effectively analyzing time-series datasets with machine learning principles.


What You Will Learn:

  • Understand the main classes of time-series and learn how to detect outliers and patterns
  • Choose the right method to solve time-series problems
  • Characterize seasonal and correlation patterns through autocorrelation and statistical techniques
  • Get to grips with time-series data visualization
  • Understand classical time-series models like ARMA and ARIMA
  • Implement deep learning models like Gaussian processes and transformers and state-of-the-art machine learning models
  • Become familiar with many libraries like prophet, xgboost, and TensorFlow


Who this book is for:

This book is ideal for data analysts, data scientists, and Python developers who are looking to perform time-series analysis to effectively predict outcomes. Basic knowledge of the Python language is essential. Familiarity with statistics is desirable.

Author: Ben Auffarth
Publisher: Packt Publishing
Published: 10/29/2021
Pages: 370
Binding Type: Paperback
Weight: 1.40lbs
Size: 9.25h x 7.50w x 0.77d
ISBN: 9781801819626

About the Author
Auffarth, Ben: - Ben Auffarth is a full-stack data scientist who has >15 years of work experience. With a background and Ph.D. in computational and cognitive neuroscience from one of Europe's top engineering universities, he has designed and conducted wet lab experiments on cell cultures, analyzed experiments with terabytes of data, run brain models on IBM supercomputers with up to 64k cores, built production systems processing hundreds of thousands of transactions per day, and trained neural networks on millions of text documents. In his work, he often notices a lack of appreciation for the importance of time-related factors, a deficit he wanted to address in this book. He co-founded and is the former president of Data Science Speakers, London.

This title is not returnable

Returns Policy

You may return most new, unopened items within 30 days of delivery for a full refund. We'll also pay the return shipping costs if the return is a result of our error (you received an incorrect or defective item, etc.).

You should expect to receive your refund within four weeks of giving your package to the return shipper, however, in many cases you will receive a refund more quickly. This time period includes the transit time for us to receive your return from the shipper (5 to 10 business days), the time it takes us to process your return once we receive it (3 to 5 business days), and the time it takes your bank to process our refund request (5 to 10 business days).

If you need to return an item, simply login to your account, view the order using the "Complete Orders" link under the My Account menu and click the Return Item(s) button. We'll notify you via e-mail of your refund once we've received and processed the returned item.

Shipping

We can ship to virtually any address in the world. Note that there are restrictions on some products, and some products cannot be shipped to international destinations.

When you place an order, we will estimate shipping and delivery dates for you based on the availability of your items and the shipping options you choose. Depending on the shipping provider you choose, shipping date estimates may appear on the shipping quotes page.

Please also note that the shipping rates for many items we sell are weight-based. The weight of any such item can be found on its detail page. To reflect the policies of the shipping companies we use, all weights will be rounded up to the next full pound.

Related Products

Recently Viewed Products