Python Machine Learning By Example - Fourth Edition: Unlock machine learning best practices with real-world use cases

Author Yuxi (Hayden) Liu teaches machine learning from the fundamentals to building NLP transformers and multimodal models...
$138.88 AUD
$138.88 AUD
SKU: 9781835085622
Product Type: Books
Please hurry! Only 225 left in stock
Author: Yuxi (Hayden) Liu
Format: Paperback
Language: English
Subtotal: $138.88
10 customers are viewing this product
Python Machine Learning By Example - Fourth Edition: Unlock machine learning best practices with real-world use cases by Liu, Yuxi (Hayden)

Python Machine Learning By Example - Fourth Edition: Unlock machine learning best practices with real-world use cases

$138.88

Python Machine Learning By Example - Fourth Edition: Unlock machine learning best practices with real-world use cases

$138.88
Author: Yuxi (Hayden) Liu
Format: Paperback
Language: English

Author Yuxi (Hayden) Liu teaches machine learning from the fundamentals to building NLP transformers and multimodal models with best practice tips and real-world examples using PyTorch, TensorFlow, scikit-learn, and pandas

Key Features:

- Discover new and updated content on NLP transformers, PyTorch, and computer vision modeling

- Includes a dedicated chapter on best practices and additional best practice tips throughout the book to improve your ML solutions

- Implement ML models, such as neural networks and linear and logistic regression, from scratch

- Purchase of the print or Kindle book includes a free PDF copy

Book Description:

The fourth edition of Python Machine Learning by Example is a comprehensive guide for beginners and experienced ML practitioners who want to learn more advanced techniques like multimodal modeling. Written by experienced machine learning author and ex-Google ML engineer Yuxi (Hayden) Liu, this edition emphasizes best practices, providing invaluable insights for ML engineers, data scientists, and analysts.

Explore advanced techniques, including two new chapters on natural language processing transformers with BERT and GPT, and multimodal computer vision models with PyTorch and Hugging Face. You'll learn key modeling techniques using practical examples, such as predicting stock prices and creating an image search engine.

This hands-on machine learning book navigates through complex challenges, bridging the gap between theoretical understanding and practical application. Elevate your machine learning and deep learning expertise, tackle intricate problems, and unlock the potential of advanced techniques in machine learning with this authoritative guide.

What You Will Learn:

- Follow machine learning best practices across data preparation and model development

- Build and improve image classifiers using Convolutional Neural Networks (CNNs) and transfer learning

- Develop and fine-tune neural networks using TensorFlow and PyTorch

- Analyze sequence data and make predictions using RNNs, transformers, and CLIP

- Build classifiers using SVMs and boost performance with PCA

- Avoid overfitting using regularization, feature selection, and more

Who this book is for:

This expanded fourth edition is ideal for data scientists, ML engineers, analysts, and students with Python programming knowledge. The real-world examples, best practices, and code prepare anyone undertaking their first serious ML project.

Table of Contents

- Getting Started with Machine Learning and Python

- Building a Movie Recommendation Engine

- Predicting Online Ad Click-Through with Tree-Based Algorithms

- Predicting Online Ad Click-Through with Logistic Regression

- Predicting Stock Prices with Regression Algorithms

- Predicting Stock Prices with Artificial Neural Networks

- Mining the 20 Newsgroups Dataset with Text Analysis Techniques

- Discovering Underlying Topics in the Newsgroups Dataset with Clustering and Topic Modeling

- Recognizing Faces with Support Vector Machine

- Machine Learning Best Practices

- Categorizing Images of Clothing with Convolutional Neural Networks

- Making Predictions with Sequences Using Recurrent Neural Networks

- Advancing Language Understanding and Generation with Transformer Models

- Building An Image Search Engine Using Multimodal Models

- Making Decisions in Complex Environments with Reinforcement Learning



Author: Yuxi (Hayden) Liu
Publisher: Packt Publishing
Published: 07/31/2024
Pages: 518
Binding Type: Paperback
Weight: 1.94lbs
Size: 9.25h x 7.50w x 1.04d
ISBN: 9781835085622

This title is not returnable

Returns Policy

You may return most new, unopened items within 30 days of delivery for a full refund. We'll also pay the return shipping costs if the return is a result of our error (you received an incorrect or defective item, etc.).

You should expect to receive your refund within four weeks of giving your package to the return shipper, however, in many cases you will receive a refund more quickly. This time period includes the transit time for us to receive your return from the shipper (5 to 10 business days), the time it takes us to process your return once we receive it (3 to 5 business days), and the time it takes your bank to process our refund request (5 to 10 business days).

If you need to return an item, simply login to your account, view the order using the "Complete Orders" link under the My Account menu and click the Return Item(s) button. We'll notify you via e-mail of your refund once we've received and processed the returned item.

Shipping

We can ship to virtually any address in the world. Note that there are restrictions on some products, and some products cannot be shipped to international destinations.

When you place an order, we will estimate shipping and delivery dates for you based on the availability of your items and the shipping options you choose. Depending on the shipping provider you choose, shipping date estimates may appear on the shipping quotes page.

Please also note that the shipping rates for many items we sell are weight-based. The weight of any such item can be found on its detail page. To reflect the policies of the shipping companies we use, all weights will be rounded up to the next full pound.

Related Products

Recently Viewed Products