Big Data Science & Analytics: A Hands-On Approach

Data and information are fuel of this new age where powerful analytics algorithms burn this fuel to...
¥19,294 JPY
¥19,294 JPY
SKU: 9780996025546
Product Type: Books
Please hurry! Only 690 left in stock
Author: Arshdeep Bahga
Format: Hardcover
Language: English
Subtotal: ¥19,294
10 customers are viewing this product
Big Data Science & Analytics: A Hands-On Approach by Bahga, Arshdeep

Big Data Science & Analytics: A Hands-On Approach

¥19,294

Big Data Science & Analytics: A Hands-On Approach

¥19,294
Author: Arshdeep Bahga
Format: Hardcover
Language: English

Data and information are fuel of this new age where powerful analytics algorithms burn this fuel to generate decisions that are expected to create a smarter and more efficient world for all of us to live in. This new area of technology has been defined as Big Data Science and Analytics, and the industrial and academic communities are realizing this as a competitive technology that can generate significant new wealth and opportunity.

Big data is defined as collections of datasets whose volume, velocity or variety is so large that it is difficult to store, manage, process and analyze the data using traditional databases and data processing tools. Big data science and analytics deals with collection, storage, processing and analysis of massive-scale data. Industry surveys, by Gartner and e-Skills, for instance, predict that there will be over 2 million job openings for engineers and scientists trained in the area of data science and analytics alone, and that the job market is in this area is growing at a 150 percent year-over-year growth rate.

We have written this textbook, as part of our expanding "A Hands-On Approach"(TM) series, to meet this need at colleges and universities, and also for big data service providers who may be interested in offering a broader perspective of this emerging field to accompany their customer and developer training programs. The typical reader is expected to have completed a couple of courses in programming using traditional high-level languages at the college-level, and is either a senior or a beginning graduate student in one of the science, technology, engineering or mathematics (STEM) fields. An accompanying website for this book contains additional support for instruction and learning (www.big-data-analytics-book.com)

The book is organized into three main parts, comprising a total of twelve chapters. Part I provides an introduction to big data, applications of big data, and big data science and analytics patterns and architectures. A novel data science and analytics application system design methodology is proposed and its realization through use of open-source big data frameworks is described. This methodology describes big data analytics applications as realization of the proposed Alpha, Beta, Gamma and Delta models, that comprise tools and frameworks for collecting and ingesting data from various sources into the big data analytics infrastructure, incorporating distributed filesystems and non-relational (NoSQL) databases for data storage, and processing frameworks for batch and real-time analytics. This new methodology forms the pedagogical foundation of this book.

Part II introduces the reader to various tools and frameworks for big data analytics, and the architectural and programming aspects of these frameworks, with examples in Python. We describe Publish-Subscribe messaging frameworks (Kafka & Kinesis), Source-Sink connectors (Flume), Database Connectors (Sqoop), Messaging Queues (RabbitMQ, ZeroMQ, RestMQ, Amazon SQS) and custom REST, WebSocket and MQTT-based connectors. The reader is introduced to data storage, batch and real-time analysis, and interactive querying frameworks including HDFS, Hadoop, MapReduce, YARN, Pig, Oozie, Spark, Solr, HBase, Storm, Spark Streaming, Spark SQL, Hive, Amazon Redshift and Google BigQuery. Also described are serving databases (MySQL, Amazon DynamoDB, Cassandra, MongoDB) and the Django Python web framework.

Part III introduces the reader to various machine learning algorithms with examples using the Spark MLlib and H2O frameworks, and visualizations using frameworks such as Lightning, Pygal and Seaborn.



Author: Arshdeep Bahga, Vijay Madisetti
Publisher: Vpt
Published: 04/15/2016
Pages: 544
Binding Type: Hardcover
Weight: 2.54lbs
Size: 10.00h x 7.00w x 1.19d
ISBN: 9780996025546

This title is not returnable

Returns Policy

You may return most new, unopened items within 30 days of delivery for a full refund. We'll also pay the return shipping costs if the return is a result of our error (you received an incorrect or defective item, etc.).

You should expect to receive your refund within four weeks of giving your package to the return shipper, however, in many cases you will receive a refund more quickly. This time period includes the transit time for us to receive your return from the shipper (5 to 10 business days), the time it takes us to process your return once we receive it (3 to 5 business days), and the time it takes your bank to process our refund request (5 to 10 business days).

If you need to return an item, simply login to your account, view the order using the "Complete Orders" link under the My Account menu and click the Return Item(s) button. We'll notify you via e-mail of your refund once we've received and processed the returned item.

Shipping

We can ship to virtually any address in the world. Note that there are restrictions on some products, and some products cannot be shipped to international destinations.

When you place an order, we will estimate shipping and delivery dates for you based on the availability of your items and the shipping options you choose. Depending on the shipping provider you choose, shipping date estimates may appear on the shipping quotes page.

Please also note that the shipping rates for many items we sell are weight-based. The weight of any such item can be found on its detail page. To reflect the policies of the shipping companies we use, all weights will be rounded up to the next full pound.

Related Products

Recently Viewed Products