Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine lear

Integrate scikit-learn with various tools such as NumPy, pandas, imbalanced-learn, and scikit-surprise and use it to solve...
¥14,583 JPY
¥14,583 JPY
SKU: 9781838826048
Product Type: Books
Please hurry! Only 402 left in stock
Author: Tarek Amr
Format: Paperback
Language: English
Subtotal: ¥14,583
10 customers are viewing this product
Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine lear by Amr, Tarek

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine lear

¥14,583

Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits: A practical guide to implementing supervised and unsupervised machine lear

¥14,583
Author: Tarek Amr
Format: Paperback
Language: English

Integrate scikit-learn with various tools such as NumPy, pandas, imbalanced-learn, and scikit-surprise and use it to solve real-world machine learning problems

Key Features

  • Delve into machine learning with this comprehensive guide to scikit-learn and scientific Python
  • Master the art of data-driven problem-solving with hands-on examples
  • Foster your theoretical and practical knowledge of supervised and unsupervised machine learning algorithms

Book Description

Machine learning is applied everywhere, from business to research and academia, while scikit-learn is a versatile library that is popular among machine learning practitioners. This book serves as a practical guide for anyone looking to provide hands-on machine learning solutions with scikit-learn and Python toolkits.

The book begins with an explanation of machine learning concepts and fundamentals, and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms, and shows you how to use them to solve real-life problems. You'll also learn about various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you'll gain a thorough understanding of its theory and learn when to apply it. As you advance, you'll learn how to deal with unlabeled data and when to use different clustering and anomaly detection algorithms.

By the end of this machine learning book, you'll have learned how to take a data-driven approach to provide end-to-end machine learning solutions. You'll also have discovered how to formulate the problem at hand, prepare required data, and evaluate and deploy models in production.

What you will learn

  • Understand when to use supervised, unsupervised, or reinforcement learning algorithms
  • Find out how to collect and prepare your data for machine learning tasks
  • Tackle imbalanced data and optimize your algorithm for a bias or variance tradeoff
  • Apply supervised and unsupervised algorithms to overcome various machine learning challenges
  • Employ best practices for tuning your algorithm's hyper parameters
  • Discover how to use neural networks for classification and regression
  • Build, evaluate, and deploy your machine learning solutions to production

Who this book is for

This book is for data scientists, machine learning practitioners, and anyone who wants to learn how machine learning algorithms work and to build different machine learning models using the Python ecosystem. The book will help you take your knowledge of machine learning to the next level by grasping its ins and outs and tailoring it to your needs. Working knowledge of Python and a basic understanding of underlying mathematical and statistical concepts is required.



Author: Tarek Amr
Publisher: Packt Publishing
Published: 07/24/2020
Pages: 384
Binding Type: Paperback
Weight: 1.45lbs
Size: 9.25h x 7.50w x 0.79d
ISBN: 9781838826048

About the Author
Amr, Tarek: - Tarek Amr has 8 years of experience in data science and machine learning. After finishing his postgraduate degree at the University of East Anglia, he worked in a number of startups and scale-up companies in Egypt and the Netherlands. This is his second data-related book. His previous book covered data visualization using D3.js. He enjoys giving talks and writing about different computer science and business concepts and explaining them to a wider audience. He can be reached on Twitter at @gr33ndata. He is happy to respond to all questions related to this book. Feel free to get in touch with him if any parts of the book need clarification or if you would like to discuss any of the concepts here in more detail.

This title is not returnable

Returns Policy

You may return most new, unopened items within 30 days of delivery for a full refund. We'll also pay the return shipping costs if the return is a result of our error (you received an incorrect or defective item, etc.).

You should expect to receive your refund within four weeks of giving your package to the return shipper, however, in many cases you will receive a refund more quickly. This time period includes the transit time for us to receive your return from the shipper (5 to 10 business days), the time it takes us to process your return once we receive it (3 to 5 business days), and the time it takes your bank to process our refund request (5 to 10 business days).

If you need to return an item, simply login to your account, view the order using the "Complete Orders" link under the My Account menu and click the Return Item(s) button. We'll notify you via e-mail of your refund once we've received and processed the returned item.

Shipping

We can ship to virtually any address in the world. Note that there are restrictions on some products, and some products cannot be shipped to international destinations.

When you place an order, we will estimate shipping and delivery dates for you based on the availability of your items and the shipping options you choose. Depending on the shipping provider you choose, shipping date estimates may appear on the shipping quotes page.

Please also note that the shipping rates for many items we sell are weight-based. The weight of any such item can be found on its detail page. To reflect the policies of the shipping companies we use, all weights will be rounded up to the next full pound.

Related Products

Recently Viewed Products