Pytorch Pocket Reference: Building and Deploying Deep Learning Models

This concise, easy-to-use reference puts one of the most popular frameworks for deep learning research and development...
¥6,715 JPY
¥6,715 JPY
SKU: 9781492090007
Product Type: Books
Please hurry! Only 711 left in stock
Author: Joe Papa
Format: Paperback
Language: English
Subtotal: ¥6,715
10 customers are viewing this product
Pytorch Pocket Reference: Building and Deploying Deep Learning Models by Papa, Joe

Pytorch Pocket Reference: Building and Deploying Deep Learning Models

¥6,715

Pytorch Pocket Reference: Building and Deploying Deep Learning Models

¥6,715
Author: Joe Papa
Format: Paperback
Language: English

This concise, easy-to-use reference puts one of the most popular frameworks for deep learning research and development at your fingertips. Author Joe Papa provides instant access to syntax, design patterns, and code examples to accelerate your development and reduce the time you spend searching for answers.

Research scientists, machine learning engineers, and software developers will find clear, structured PyTorch code that covers every step of neural network development-from loading data to customizing training loops to model optimization and GPU/TPU acceleration. Quickly learn how to deploy your code to production using AWS, Google Cloud, or Azure and deploy your ML models to mobile and edge devices.

  • Learn basic PyTorch syntax and design patterns
  • Create custom models and data transforms
  • Train and deploy models using a GPU and TPU
  • Train and test a deep learning classifier
  • Accelerate training using optimization and distributed training
  • Access useful PyTorch libraries and the PyTorch ecosystem


Author: Joe Papa
Publisher: O'Reilly Media
Published: 06/01/2021
Pages: 310
Binding Type: Paperback
Weight: 0.50lbs
Size: 7.01h x 4.25w x 0.65d
ISBN: 9781492090007

About the Author

Joe Papa has over 25 years experience in research & development and is the founder of INSPIRD.ai. He holds an MSEE and has led AI Research teams with PyTorch at Booz Allen and Perspecta Labs. Joe has mentored hundreds of Data Scientists and has taught 6,000+ students across the world on Udemy.


Returns Policy

You may return most new, unopened items within 30 days of delivery for a full refund. We'll also pay the return shipping costs if the return is a result of our error (you received an incorrect or defective item, etc.).

You should expect to receive your refund within four weeks of giving your package to the return shipper, however, in many cases you will receive a refund more quickly. This time period includes the transit time for us to receive your return from the shipper (5 to 10 business days), the time it takes us to process your return once we receive it (3 to 5 business days), and the time it takes your bank to process our refund request (5 to 10 business days).

If you need to return an item, simply login to your account, view the order using the "Complete Orders" link under the My Account menu and click the Return Item(s) button. We'll notify you via e-mail of your refund once we've received and processed the returned item.

Shipping

We can ship to virtually any address in the world. Note that there are restrictions on some products, and some products cannot be shipped to international destinations.

When you place an order, we will estimate shipping and delivery dates for you based on the availability of your items and the shipping options you choose. Depending on the shipping provider you choose, shipping date estimates may appear on the shipping quotes page.

Please also note that the shipping rates for many items we sell are weight-based. The weight of any such item can be found on its detail page. To reflect the policies of the shipping companies we use, all weights will be rounded up to the next full pound.

Related Products

Recently Viewed Products