Time Series Forecasting in Python

Build predictive models from time-based patterns in your data. Master statistical models including new deep learning approaches...
¥17,881 JPY
¥17,881 JPY
SKU: 9781617299889
Product Type: Books
Please hurry! Only 27 left in stock
Author: Marco Peixeiro
Format: Paperback
Language: English
Subtotal: ¥17,881
10 customers are viewing this product
Time Series Forecasting in Python by Peixeiro, Marco

Time Series Forecasting in Python

¥17,881

Time Series Forecasting in Python

¥17,881
Author: Marco Peixeiro
Format: Paperback
Language: English
Build predictive models from time-based patterns in your data. Master statistical models including new deep learning approaches for time series forecasting.

In Time Series Forecasting in Python you will learn how to:

Recognize a time series forecasting problem and build a performant predictive model
Create univariate forecasting models that account for seasonal effects and external variables
Build multivariate forecasting models to predict many time series at once
Leverage large datasets by using deep learning for forecasting time series
Automate the forecasting process

Time Series Forecasting in Python teaches you to build powerful predictive models from time-based data. Every model you create is relevant, useful, and easy to implement with Python. You'll explore interesting real-world datasets like Google's daily stock price and economic data for the USA, quickly progressing from the basics to developing large-scale models that use deep learning tools like TensorFlow.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
You can predict the future--with a little help from Python, deep learning, and time series data! Time series forecasting is a technique for modeling time-centric data to identify upcoming events. New Python libraries and powerful deep learning tools make accurate time series forecasts easier than ever before.

About the book
Time Series Forecasting in Python teaches you how to get immediate, meaningful predictions from time-based data such as logs, customer analytics, and other event streams. In this accessible book, you'll learn statistical and deep learning methods for time series forecasting, fully demonstrated with annotated Python code. Develop your skills with projects like predicting the future volume of drug prescriptions, and you'll soon be ready to build your own accurate, insightful forecasts.

What's inside

Create models for seasonal effects and external variables
Multivariate forecasting models to predict multiple time series
Deep learning for large datasets
Automate the forecasting process

About the reader
For data scientists familiar with Python and TensorFlow.

About the author
Marco Peixeiro is a seasoned data science instructor who has worked as a data scientist for one of Canada's largest banks.

Table of Contents
PART 1 TIME WAITS FOR NO ONE
1 Understanding time series forecasting
2 A naive prediction of the future
3 Going on a random walk
PART 2 FORECASTING WITH STATISTICAL MODELS
4 Modeling a moving average process
5 Modeling an autoregressive process
6 Modeling complex time series
7 Forecasting non-stationary time series
8 Accounting for seasonality
9 Adding external variables to our model
10 Forecasting multiple time series
11 Capstone: Forecasting the number of antidiabetic drug prescriptions in Australia
PART 3 LARGE-SCALE FORECASTING WITH DEEP LEARNING
12 Introducing deep learning for time series forecasting
13 Data windowing and creating baselines for deep learning
14 Baby steps with deep learning
15 Remembering the past with LSTM
16 Filtering a time series with CNN
17 Using predictions to make more predictions
18 Capstone: Forecasting the electric power consumption of a household
PART 4 AUTOMATING FORECASTING AT SCALE
19 Automating time series forecasting with Prophet
20 Capstone: Forecasting the monthly average retail price of steak in Canada
21 Going above and beyond

Author: Marco Peixeiro
Publisher: Manning Publications
Published: 10/04/2022
Pages: 456
Binding Type: Paperback
Weight: 1.41lbs
Size: 9.10h x 7.30w x 1.10d
ISBN: 9781617299889

Returns Policy

You may return most new, unopened items within 30 days of delivery for a full refund. We'll also pay the return shipping costs if the return is a result of our error (you received an incorrect or defective item, etc.).

You should expect to receive your refund within four weeks of giving your package to the return shipper, however, in many cases you will receive a refund more quickly. This time period includes the transit time for us to receive your return from the shipper (5 to 10 business days), the time it takes us to process your return once we receive it (3 to 5 business days), and the time it takes your bank to process our refund request (5 to 10 business days).

If you need to return an item, simply login to your account, view the order using the "Complete Orders" link under the My Account menu and click the Return Item(s) button. We'll notify you via e-mail of your refund once we've received and processed the returned item.

Shipping

We can ship to virtually any address in the world. Note that there are restrictions on some products, and some products cannot be shipped to international destinations.

When you place an order, we will estimate shipping and delivery dates for you based on the availability of your items and the shipping options you choose. Depending on the shipping provider you choose, shipping date estimates may appear on the shipping quotes page.

Please also note that the shipping rates for many items we sell are weight-based. The weight of any such item can be found on its detail page. To reflect the policies of the shipping companies we use, all weights will be rounded up to the next full pound.

Related Products

Recently Viewed Products