Multivariate Reduced-Rank Regression: Theory, Methods and Applications

This book provides an account of multivariate reduced-rank regression, a tool of multivariate analysis that enjoys a...
$302.45 SGD
$302.45 SGD
SKU: 9781071627914
Product Type: Books
Please hurry! Only 795 left in stock
Author: Gregory C. Reinsel
Format: Paperback
Language: English
Subtotal: $302.45
10 customers are viewing this product
Multivariate Reduced-Rank Regression: Theory, Methods and Applications by Reinsel, Gregory C.

Multivariate Reduced-Rank Regression: Theory, Methods and Applications

$302.45

Multivariate Reduced-Rank Regression: Theory, Methods and Applications

$302.45
Author: Gregory C. Reinsel
Format: Paperback
Language: English

This book provides an account of multivariate reduced-rank regression, a tool of multivariate analysis that enjoys a broad array of applications. In addition to a historical review of the topic, its connection to other widely used statistical methods, such as multivariate analysis of variance (MANOVA), discriminant analysis, principal components, canonical correlation analysis, and errors-in-variables models, is also discussed.

This new edition incorporates Big Data methodology and its applications, as well as high-dimensional reduced-rank regression, generalized reduced-rank regression with complex data, and sparse and low-rank regression methods. Each chapter contains developments of basic theoretical results, as well as details on computational procedures, illustrated with numerical examples drawn from disciplines such as biochemistry, genetics, marketing, and finance.

This book is designed for advanced students, practitioners, and researchers, who may deal with moderate and high-dimensional multivariate data. Because regression is one of the most popular statistical methods, the multivariate regression analysis tools described should provide a natural way of looking at large (both cross-sectional and chronological) data sets. This book can be assigned in seminar-type courses taken by advanced graduate students in statistics, machine learning, econometrics, business, and engineering.




Author: Gregory C. Reinsel, Raja P. Velu, Kun Chen
Publisher: Springer
Published: 12/01/2022
Pages: 411
Binding Type: Paperback
Weight: 1.34lbs
Size: 9.21h x 6.14w x 0.89d
ISBN: 9781071627914

About the Author

Gregory C. Reinsel (now deceased) was Professor of Statistics at the University of Wisconsin, Madison. He was a fellow of the American Statistical Association. He also author of the book Elements of Multivariate Time Series Analysis, Second Edition, and coauthor, with G.E.P. Box and G.M. Jenkins, of the book Time Series Analysis: Forecasting and Control, Third Edition. Greg will remain the first author, in our gratitude.

Raja P. Velu taught business analytics and finance at Syracuse University. The first version of the book was mainly based on his thesis written under the supervision of Professor Reinsel and Professor Dean Wichern. He works in the big data models area with interest in high-dimensional time series and forecasting applications. His book, Algorithmic Trading and Quantitative Strategies, co-authored with practitioners from CITI and JP Morgan Chase, is published by Taylor and Francis. He was recently (2021-2022) a visiting researcher at Google working with the Resource Efficiency Data Science team.

Kun Chen is an associate professor in the Department of Statistics at the University of Connecticut. He is a Fellow of the American Statistical Association and an Elected Member of the International Statistical Institute. The first version of the book has had profound influence on his research since his PhD study at the University of Iowa under the supervision of Professor Kung-Sik Chan. His related work has resulted in many publications in statistics, machine learning, and scientific journals and the developed methods have been applied to tackle consequential problems in various fields including public health, ecology, and biological sciences.





This title is not returnable

Returns Policy

You may return most new, unopened items within 30 days of delivery for a full refund. We'll also pay the return shipping costs if the return is a result of our error (you received an incorrect or defective item, etc.).

You should expect to receive your refund within four weeks of giving your package to the return shipper, however, in many cases you will receive a refund more quickly. This time period includes the transit time for us to receive your return from the shipper (5 to 10 business days), the time it takes us to process your return once we receive it (3 to 5 business days), and the time it takes your bank to process our refund request (5 to 10 business days).

If you need to return an item, simply login to your account, view the order using the "Complete Orders" link under the My Account menu and click the Return Item(s) button. We'll notify you via e-mail of your refund once we've received and processed the returned item.

Shipping

We can ship to virtually any address in the world. Note that there are restrictions on some products, and some products cannot be shipped to international destinations.

When you place an order, we will estimate shipping and delivery dates for you based on the availability of your items and the shipping options you choose. Depending on the shipping provider you choose, shipping date estimates may appear on the shipping quotes page.

Please also note that the shipping rates for many items we sell are weight-based. The weight of any such item can be found on its detail page. To reflect the policies of the shipping companies we use, all weights will be rounded up to the next full pound.

Related Products

Recently Viewed Products