Advanced Natural Language Processing with TensorFlow 2: Build effective real-world NLP applications using NER, RNNs, seq2seq models, Transformers, and

One-stop solution for NLP practitioners, ML developers and data scientists to build effective NLP systems that can...
Dhs. 354.23 AED
Dhs. 354.23 AED
SKU: 9781800200937
Product Type: Books
Please hurry! Only 360 left in stock
Author: Ashish Bansal
Format: Paperback
Language: English
Subtotal: Dhs. 354.23
10 customers are viewing this product
Advanced Natural Language Processing with TensorFlow 2: Build effective real-world NLP applications using NER, RNNs, seq2seq models, Transformers, and by Bansal, Ashish

Advanced Natural Language Processing with TensorFlow 2: Build effective real-world NLP applications using NER, RNNs, seq2seq models, Transformers, and

Dhs. 354.23

Advanced Natural Language Processing with TensorFlow 2: Build effective real-world NLP applications using NER, RNNs, seq2seq models, Transformers, and

Dhs. 354.23
Author: Ashish Bansal
Format: Paperback
Language: English

One-stop solution for NLP practitioners, ML developers and data scientists to build effective NLP systems that can perform real-world complicated tasks


Key Features

  • Implement deep learning algorithms such as BiLSTMS, CRFs, and many more using TensorFlow 2
  • Explore classical NLP techniques and libraries including parts-of-speech tagging and tokenization
  • Learn practical applications of NLP covering the forefronts of the field like sentiment analysis and generating text


Book Description

In the last couple of years, there have been tremendous advances in natural language processing, and we are now moving from research labs into practical applications. Advanced Natural Language Processing comes with a perfect blend of both the theoretical and practical aspects of trending and complex NLP techniques.

This book is focused on innovative applications in the field of NLP, language generation, and dialogue systems. It goes into the details of applying the concepts of text pre-processing using techniques such as tokenization, parts of speech tagging, and lemmatization using popular libraries such as Stanford NLP and SpaCy. Named Entity Recognition (NER), a cornerstone of task-oriented bots, is built from scratch using Conditional Random Fields and Viterbi Decoding on top of RNNs.

Taking a practical and application-focused perspective, the book covers key emerging areas such as generating text for use in sentence completion and text summarization, bridging images and text by generating captions for images, and managing dialogue aspects of chatbot design. It also covers one of the most important reasons behind recent advances in NLP - applying transfer learning and fine-tuning using TensorFlow 2.

Further, it covers practical techniques that can simplify the labelling of textual data which otherwise proves to be a costly affair. The book also has a working code for each tech piece so that you can adapt them to your use cases.

By the end of this TensorFlow book, you will have an advanced knowledge of the tools, techniques and deep learning architecture used to solve complex NLP problems.


What You Will Learn

  • Grasp important pre-steps in building NLP applications like POS tagging
  • Deal with vast amounts of unlabeled and small labelled Datasets in NLP
  • Use transfer and weakly supervised learning using libraries like Snorkel
  • Perform sentiment analysis using BERT
  • Apply encoder-decoder NN architectures and beam search for summarizing text
  • Use transformer models with attention to bring images and text together
  • Build applications that generate captions and answer questions about images
  • Use advanced TensorFlow techniques like learning rate annealing, custom layers, and custom loss functions to build the latest deep NLP models


Who this book is for

This is not an introductory book and assumes the reader is familiar with basics of NLP and has fundamental Python skills, as well as basic knowledge of machine learning and undergraduate-level calculus and linear algebra.


The readers who can benefit the most from this book include:

Intermediate ML developers who are familiar with the basics of supervised learning and deep learning techniques

Professionals who already use TensorFlow/Python for purposes such as data science, ML, research, and analysis

Author: Ashish Bansal
Publisher: Packt Publishing
Published: 02/03/2021
Pages: 380
Binding Type: Paperback
Weight: 1.44lbs
Size: 9.25h x 7.50w x 0.78d
ISBN: 9781800200937

About the Author
Bansal, Ashish: - Ashish is an AI/ML leader, a well-known speaker, and an astute technologist with over 20 years of experience in the field. He has a Bachelor's in technology from IIT BHU, and an MBA in marketing from Kellogg School of Management. He is currently the Director of Recommendations at Twitch where he works on building scalable recommendation systems across a variety of product surfaces, connecting content to people. He has worked on recommendation systems at multiple organizations, most notably Twitter where he led Trends and Events recommendations and at Capital One where he worked on B2B and B2C products. Ashish was also a co-founder of GALE Partners, a full-service digital agency in Toronto, and spent over 9 years at SapientNitro, a leading digital agency.

This title is not returnable

Returns Policy

You may return most new, unopened items within 30 days of delivery for a full refund. We'll also pay the return shipping costs if the return is a result of our error (you received an incorrect or defective item, etc.).

You should expect to receive your refund within four weeks of giving your package to the return shipper, however, in many cases you will receive a refund more quickly. This time period includes the transit time for us to receive your return from the shipper (5 to 10 business days), the time it takes us to process your return once we receive it (3 to 5 business days), and the time it takes your bank to process our refund request (5 to 10 business days).

If you need to return an item, simply login to your account, view the order using the "Complete Orders" link under the My Account menu and click the Return Item(s) button. We'll notify you via e-mail of your refund once we've received and processed the returned item.

Shipping

We can ship to virtually any address in the world. Note that there are restrictions on some products, and some products cannot be shipped to international destinations.

When you place an order, we will estimate shipping and delivery dates for you based on the availability of your items and the shipping options you choose. Depending on the shipping provider you choose, shipping date estimates may appear on the shipping quotes page.

Please also note that the shipping rates for many items we sell are weight-based. The weight of any such item can be found on its detail page. To reflect the policies of the shipping companies we use, all weights will be rounded up to the next full pound.

Related Products

Recently Viewed Products