Higher Order Dynamic Mode Decomposition and Its Applications

Higher Order Dynamic Mode Decomposition and Its Applications provides detailed background theory, as well as several fully...
Dhs. 1,420.74 AED
Dhs. 1,420.74 AED
SKU: 9780128197431
Product Type: Books
Please hurry! Only 348 left in stock
Author: Jose Manuel Vega
Format: Paperback
Language: English
Subtotal: Dhs. 1,420.74
Higher Order Dynamic Mode Decomposition and Its Applications by Vega, Jose Manuel

Higher Order Dynamic Mode Decomposition and Its Applications

Dhs. 1,420.74

Higher Order Dynamic Mode Decomposition and Its Applications

Dhs. 1,420.74
Author: Jose Manuel Vega
Format: Paperback
Language: English

Higher Order Dynamic Mode Decomposition and Its Applications provides detailed background theory, as well as several fully explained applications from a range of industrial contexts to help readers understand and use this innovative algorithm. Data-driven modelling of complex systems is a rapidly evolving field, which has applications in domains including engineering, medical, biological, and physical sciences, where it is providing ground-breaking insights into complex systems that exhibit rich multi-scale phenomena in both time and space.

Starting with an introductory summary of established order reduction techniques like POD, DEIM, Koopman, and DMD, this book proceeds to provide a detailed explanation of higher order DMD, and to explain its advantages over other methods. Technical details of how the HODMD can be applied to a range of industrial problems will help the reader decide how to use the method in the most appropriate way, along with example MATLAB codes and advice on how to analyse and present results.



Author: Jose Manuel Vega, Soledad Le Clainche
Publisher: Academic Press
Published: 09/22/2020
Pages: 322
Binding Type: Paperback
Weight: 0.95lbs
Size: 9.00h x 6.00w x 0.67d
ISBN: 9780128197431

About the Author
Vega, Jose Manuel: - Professor Vega currently holds a Professorship in Applied Mathematics at the School of Aerospace Engineering of the Universidad Politécnica de Madrid (UPM). He received a Master and a PhD, both in Aeronautical Engineering at UPM, and a Master in Mathematics at the Universidad Complutense de Madrid. Along the years, his research has focused on applied mathematics at large, including applications to physics, chemistry, and aerospace and mechanical engineering. The main topics were connected to the analysis of partial differential
equations, nonlinear dynamical systems, pattern formation, water waves, reaction-diffusion problems, interfacial phenomena, and, more recently, reduced order models and data processing tools. The latter two topics are related, precisely, to the content of this book. Specifically, he developed (with Dr. Le Clainche as collaborator) the higher order dynamic mode decomposition method, and also several extensions, including the spatio-temporal Koopman decomposition method. His research activity resulted in the publication of more than one hundred and twenty research papers in first class referred journals, as well as around forty publications resulting from scientific meetings and conferences.Le Clainche, Soledad: - Dr. Soledad Le Clainche holds a Lectureship in Applied Mathematics at the School of Aerospace Engineering of UPM. She received three Masters of Science: in Mechanical Engineering by UPCT, in Aerospace Engineering by UPM, and in Fluid Mechanics by the Von Karman Institute. In 2013 she completed her PhD in Aerospace Engineering at UPM. Her research focuses on computational
fluid dynamics and in the development of novel tools for data analysis enabling the detection of spatio-temporal patterns. More specifically, she has co-developed (with Prof. Vega) the higher order dynamic mode decomposition and variants. Additionally, she has exploited these data-driven tools to develop reduced order models that help to understand the complex physics of dynamical systems. She has also contributed to the fields of flow control, global stability analysis, synthetic jets, analysis of flow structures in complex flows (transitional and turbulent) using data-driven methods, and prediction of temporal patterns using machine learning and soft computing techniques.

This title is not returnable

Returns Policy

You may return most new, unopened items within 30 days of delivery for a full refund. We'll also pay the return shipping costs if the return is a result of our error (you received an incorrect or defective item, etc.).

You should expect to receive your refund within four weeks of giving your package to the return shipper, however, in many cases you will receive a refund more quickly. This time period includes the transit time for us to receive your return from the shipper (5 to 10 business days), the time it takes us to process your return once we receive it (3 to 5 business days), and the time it takes your bank to process our refund request (5 to 10 business days).

If you need to return an item, simply login to your account, view the order using the "Complete Orders" link under the My Account menu and click the Return Item(s) button. We'll notify you via e-mail of your refund once we've received and processed the returned item.

Shipping

We can ship to virtually any address in the world. Note that there are restrictions on some products, and some products cannot be shipped to international destinations.

When you place an order, we will estimate shipping and delivery dates for you based on the availability of your items and the shipping options you choose. Depending on the shipping provider you choose, shipping date estimates may appear on the shipping quotes page.

Please also note that the shipping rates for many items we sell are weight-based. The weight of any such item can be found on its detail page. To reflect the policies of the shipping companies we use, all weights will be rounded up to the next full pound.