Get Discount 5% Off
Subscribe to our newsletters now and stay up-to-date with new arrivals, updates and deals.
Bayesian Networks: With Examples in R, Second Edition introduces Bayesian networks using a hands-on approach. Simple yet meaningful examples illustrate each step of the modelling process and discuss side by side the underlying theory and its application using R code. The examples start from the simplest notions and gradually increase in complexity. In particular, this new edition contains significant new material on topics from modern machine-learning practice: dynamic networks, networks with heterogeneous variables, and model validation.
The first three chapters explain the whole process of Bayesian network modelling, from structure learning to parameter learning to inference. These chapters cover discrete, Gaussian, and conditional Gaussian Bayesian networks. The following two chapters delve into dynamic networks (to model temporal data) and into networks including arbitrary random variables (using Stan). The book then gives a concise but rigorous treatment of the fundamentals of Bayesian networks and offers an introduction to causal Bayesian networks. It also presents an overview of R packages and other software implementing Bayesian networks. The final chapter evaluates two real-world examples: a landmark causal protein-signalling network published in Science and a probabilistic graphical model for predicting the composition of different body parts.
Covering theoretical and practical aspects of Bayesian networks, this book provides you with an introductory overview of the field. It gives you a clear, practical understanding of the key points behind this modelling approach and, at the same time, it makes you familiar with the most relevant packages used to implement real-world analyses in R. The examples covered in the book span several application fields, data-driven models and expert systems, probabilistic and causal perspectives, thus giving you a starting point to work in a variety of scenarios.
Online supplementary materials include the data sets and the code used in the book, which will all be made available from https: //www.bnlearn.com/book-crc-2ed/
Author: Marco Scutari, Jean-Baptiste Denis
Publisher: CRC Press
Published: 07/29/2021
Pages: 258
Binding Type: Hardcover
Weight: 1.10lbs
Size: 9.30h x 6.10w x 0.80d
ISBN: 9780367366513
About the Author
Marco Scutari is a Senior Lecturer at Istituto Dalle Molle di Studisull'Intelligenza Artificiale (IDSIA), Switzerland. He has held positions in Statistics, Statistical Genetics and Machine Learning in the UK and Switzerland since completing his Ph.D. in Statistics in 2011. His research focuses on the theory of Bayesian networks and their applications to biological and clinical data, as well as statistical computing and software engineering.
Jean-Baptiste Denis was formerly appointed as a statistician and modeller at the Mathematics and Applied Informatics from Genome to Environment unit of the French National Research Institute for Agriculture, Food and Environment. His main research interests were the modelling of two-way tables and Bayesian approaches, especially applied to genotype-by-environment interactions and microbiological food safety.
You may return most new, unopened items within 30 days of delivery for a full refund. We'll also pay the return shipping costs if the return is a result of our error (you received an incorrect or defective item, etc.).
You should expect to receive your refund within four weeks of giving your package to the return shipper, however, in many cases you will receive a refund more quickly. This time period includes the transit time for us to receive your return from the shipper (5 to 10 business days), the time it takes us to process your return once we receive it (3 to 5 business days), and the time it takes your bank to process our refund request (5 to 10 business days).
If you need to return an item, simply login to your account, view the order using the "Complete Orders" link under the My Account menu and click the Return Item(s) button. We'll notify you via e-mail of your refund once we've received and processed the returned item.
We can ship to virtually any address in the world. Note that there are restrictions on some products, and some products cannot be shipped to international destinations.
When you place an order, we will estimate shipping and delivery dates for you based on the availability of your items and the shipping options you choose. Depending on the shipping provider you choose, shipping date estimates may appear on the shipping quotes page.
Please also note that the shipping rates for many items we sell are weight-based. The weight of any such item can be found on its detail page. To reflect the policies of the shipping companies we use, all weights will be rounded up to the next full pound.
Subscribe to our newsletters now and stay up-to-date with new arrivals, updates and deals.
Thanks for subscribing!
This email has been registered!
Product | SKU | Description | Collection | Availability | Product Type | Other Details |
---|