Deep Reinforcement Learning Hands-On - Second Edition: Apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web

New edition of the bestselling guide to deep reinforcement learning and how it's used to solve complex...
$197.20 AUD
$197.20 AUD
SKU: 9781838826994
Product Type: Books
Please hurry! Only 309 left in stock
Author: Maxim Lapan
Format: Paperback
Language: English
Subtotal: $197.20
10 customers are viewing this product
Deep Reinforcement Learning Hands-On - Second Edition: Apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web by Lapan, Maxim

Deep Reinforcement Learning Hands-On - Second Edition: Apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web

$197.20

Deep Reinforcement Learning Hands-On - Second Edition: Apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web

$197.20
Author: Maxim Lapan
Format: Paperback
Language: English

New edition of the bestselling guide to deep reinforcement learning and how it's used to solve complex real-world problems. Revised and expanded to include multi-agent methods, discrete optimization, RL in robotics, advanced exploration techniques, and more


Key Features:

  • Second edition of the bestselling introduction to deep reinforcement learning, expanded with six new chapters
  • Learn advanced exploration techniques including noisy networks, pseudo-count, and network distillation methods
  • Apply RL methods to cheap hardware robotics platforms


Book Description

Deep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks.

With six new chapters devoted to a variety of up-to-the-minute developments in RL, including discrete optimization (solving the Rubik's Cube), multi-agent methods, Microsoft's TextWorld environment, advanced exploration techniques, and more, you will come away from this book with a deep understanding of the latest innovations in this emerging field.

In addition, you will gain actionable insights into such topic areas as deep Q-networks, policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. You will also discover how to build a real hardware robot trained with RL for less than $100 and solve the Pong environment in just 30 minutes of training using step-by-step code optimization.

In short, Deep Reinforcement Learning Hands-On, Second Edition, is your companion to navigating the exciting complexities of RL as it helps you attain experience and knowledge through real-world examples.

What you will learn:

  • Understand the deep learning context of RL and implement complex deep learning models
  • Evaluate RL methods including cross-entropy, DQN, actor-critic, TRPO, PPO, DDPG, D4PG, and others
  • Build a practical hardware robot trained with RL methods for less than $100
  • Discover Microsoft's TextWorld environment, which is an interactive fiction games platform
  • Use discrete optimization in RL to solve a Rubik's Cube
  • Teach your agent to play Connect 4 using AlphaGo Zero
  • Explore the very latest deep RL research on topics including AI chatbots
  • Discover advanced exploration techniques, including noisy networks and network distillation techniques

Who this book is for:

Some fluency in Python is assumed. Sound understanding of the fundamentals of deep learning will be helpful. This book is an introduction to deep RL and requires no background in RL

Author: Maxim Lapan
Publisher: Packt Publishing
Published: 01/31/2020
Pages: 826
Binding Type: Paperback
Weight: 3.07lbs
Size: 9.25h x 7.50w x 1.64d
ISBN: 9781838826994

About the Author
Lapan, Maxim: - Maxim Lapan is a deep learning enthusiast and independent researcher. His background and 15 years' work expertise as a software developer and a systems architect lies from low-level Linux kernel driver development to performance optimization and design of distributed applications working on thousands of servers. With vast work experiences in big data, machine learning, and large parallel distributed HPC and non-HPC systems, he is able to explain a number of complicated concepts in simple words and vivid examples. His current areas of interest are in practical applications of deep learning, such as deep natural language processing and deep reinforcement learning. Maxim lives in Moscow, Russian Federation, with his family.

This title is not returnable

Returns Policy

You may return most new, unopened items within 30 days of delivery for a full refund. We'll also pay the return shipping costs if the return is a result of our error (you received an incorrect or defective item, etc.).

You should expect to receive your refund within four weeks of giving your package to the return shipper, however, in many cases you will receive a refund more quickly. This time period includes the transit time for us to receive your return from the shipper (5 to 10 business days), the time it takes us to process your return once we receive it (3 to 5 business days), and the time it takes your bank to process our refund request (5 to 10 business days).

If you need to return an item, simply login to your account, view the order using the "Complete Orders" link under the My Account menu and click the Return Item(s) button. We'll notify you via e-mail of your refund once we've received and processed the returned item.

Shipping

We can ship to virtually any address in the world. Note that there are restrictions on some products, and some products cannot be shipped to international destinations.

When you place an order, we will estimate shipping and delivery dates for you based on the availability of your items and the shipping options you choose. Depending on the shipping provider you choose, shipping date estimates may appear on the shipping quotes page.

Please also note that the shipping rates for many items we sell are weight-based. The weight of any such item can be found on its detail page. To reflect the policies of the shipping companies we use, all weights will be rounded up to the next full pound.

Related Products

Recently Viewed Products