Outlier Detection in Python

Learn how to identify the unusual, interesting, extreme, or inaccurate parts of your data. Data scientists have...
$241.54 AUD
$241.54 AUD
SKU: 9781633436473
Product Type: Books
Please hurry! Only 12 left in stock
Author: Brett Kennedy
Format: Paperback
Language: English
Subtotal: $241.54
Outlier Detection in Python by Kennedy, Brett

Outlier Detection in Python

$241.54

Outlier Detection in Python

$241.54
Author: Brett Kennedy
Format: Paperback
Language: English
Learn how to identify the unusual, interesting, extreme, or inaccurate parts of your data.

Data scientists have two main tasks: finding patterns in data and finding the exceptions. These outliers are often the most informative parts of data, revealing hidden insights, novel patterns, and potential problems. Outlier Detection in Python is a practical guide to spotting the parts of a dataset that deviate from the norm, even when they're hidden or intertwined among the expected data points.

In Outlier Detection in Python you'll learn how to:

- Use standard Python libraries to identify outliers
- Select the most appropriate detection methods
- Combine multiple outlier detection methods for improved results
- Interpret your results effectively
- Work with numeric, categorical, time series, and text data

Outlier detection is a vital tool for modern business, whether it's discovering new products, expanding markets, or flagging fraud and other suspicious activities. This guide presents the core tools for outlier detection, as well as techniques utilizing the Python data stack familiar to data scientists. To get started, you'll only need a basic understanding of statistics and the Python data ecosystem.

Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications.

About the technology

Outliers--values that appear inconsistent with the rest of your data--can be the key to identifying fraud, performing a security audit, spotting bot activity, or just assessing the quality of a dataset. This unique guide introduces the outlier detection tools, techniques, and algorithms you'll need to find, understand, and respond to the anomalies in your data.

About the book

Outlier Detection in Python illustrates the principles and practices of outlier detection with diverse real-world examples including social media, finance, network logs, and other important domains. You'll explore a comprehensive set of statistical methods and machine learning approaches to identify and interpret the unexpected values in tabular, text, time series, and image data. Along the way, you'll explore scikit-learn and PyOD, apply key OD algorithms, and add some high value techniques for real world OD scenarios to your toolkit.

What's inside

- Python libraries to identify outliers
- Combine outlier detection methods
- Interpret your results

About the reader

For Python programmers familiar with tools like pandas and NumPy, and the basics of statistics.

About the author

Brett Kennedy is a data scientist with over thirty years' experience in software development and data science.

Table fo Contents

Part 1
1 Introducing outlier detection
2 Simple outlier detection
3 Machine learning-based outlier detection
4 The outlier detection process
Part 2
5 Outlier detection using scikit-learn
6 The PyOD library
7 Additional libraries and algorithms for outlier detection
Part 3
8 Evaluating detectors and parameters
9 Working with specific data types
10 Handling very large and very small datasets
11 Synthetic data for outlier detection
12 Collective outliers
13 Explainable outlier detection
14 Ensembles of outlier detectors
15 Working with outlier detection predictions
Part 4
16 Deep learning-based outlier detection
17 Time-series data

Author: Brett Kennedy
Publisher: Manning Publications
Published: 01/07/2025
Pages: 560
Binding Type: Paperback
Weight: 2.07lbs
Size: 9.20h x 7.20w x 1.30d
ISBN: 9781633436473

About the Author
Brett Kennedy is a data scientist with over thirty years' experience in software development and data science. He has worked in outlier detection related to financial auditing, fraud detection, and social media analysis. He previously led a research team focusing on outlier detection.

Returns Policy

You may return most new, unopened items within 30 days of delivery for a full refund. We'll also pay the return shipping costs if the return is a result of our error (you received an incorrect or defective item, etc.).

You should expect to receive your refund within four weeks of giving your package to the return shipper, however, in many cases you will receive a refund more quickly. This time period includes the transit time for us to receive your return from the shipper (5 to 10 business days), the time it takes us to process your return once we receive it (3 to 5 business days), and the time it takes your bank to process our refund request (5 to 10 business days).

If you need to return an item, simply login to your account, view the order using the "Complete Orders" link under the My Account menu and click the Return Item(s) button. We'll notify you via e-mail of your refund once we've received and processed the returned item.

Shipping

We can ship to virtually any address in the world. Note that there are restrictions on some products, and some products cannot be shipped to international destinations.

When you place an order, we will estimate shipping and delivery dates for you based on the availability of your items and the shipping options you choose. Depending on the shipping provider you choose, shipping date estimates may appear on the shipping quotes page.

Please also note that the shipping rates for many items we sell are weight-based. The weight of any such item can be found on its detail page. To reflect the policies of the shipping companies we use, all weights will be rounded up to the next full pound.